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Abstract— The problem of liquid droplet vaporization in a hot convective gaseous environment is analyzed.
A new gas-phase viscous, thermal and species concentration boundary layer analysis is developed using an
integral approach. The gas-phase analysis is coupled with a modified form of a previous liquid-phase analysis
for the internal motion and heat transfer [S. Prakash and W. A. Sirignano, Int. J. Heat Mass Transfer 21,
885-895 (1978)]. The coupled problem is solved for three hydrocarbon fuels (n-hexane, n-decane, and n-
hexadecane). The results show that the droplet vaporization is unsteady, and that the temperature
distribution within the droplet is nonuniform for a significant part of the droplet lifetime. Some of the results
are compared with the already existing correlations after correcting them for the heat flux into the liquid

phase.
NOMENCLATURE

a(p,t), as defined by equation (48);

ag—a,, coefficients of the gas-phase velocity
profile;

A, strength of Hill’s vortex;

b{¢, 1), as defined by equation (48);

bo—by, coefficients of the gas-phase density
profile;

B, Spalding’s transfer number;

cp-cq,  coefficients of the fuel mass fraction
profile;

C,, as given by the boundary condition (i) of
equation (47);

Cp specific heat at constant pressure;

d, droplet diameter;

D, diffusion coefficient;

gi{¢),  dimensionless function as defined by
equation (36);

g,{¢),  dimensionless function as defined by
equation (44);

h, sensible enthalpy of the gaseous mixture;

h,, total enthalpy including the chemical
enthalpy of species i;

Hos scale factor in m-direction as defined by
equation (38);

hy, scale factor in stream-wise direction;

by scale factor in Y-direction;

b, scale factor in the aximuthal direction;

L, heat of vaporization of the fuel,;

L, modified heat of vaporization as defined
by equation (17);

m, mass-weighted streamline coordinate de-
fined by equation (35);

m,, mass vaporization rate with gas-phase
convection

g, mass vaporization rate with spherically
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symmetric vaporization;
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vaporizing mass flux;

average vaporizing mass flux;

Mach nymber;

molecular weight of ith species;

the order of { );

pressure, also non-dimensional radius;
Prandtl number;

average heat flux;

radial distance in spherical polar coor-
dinate system;

normal distance of the interface from the
axis of symmetry;

droplet radius;

gas constant;

Reynolds number based on radius;
gas-phase Reynolds number based on
diameter;

fime;

temperature;

average temperature on a closed stream
surface as defined by equation (41);
boiling point of the liquid;

temperature at the edge of gas-phase
boundary layer;

initial temperature ;

interface temperature;

gas-phase velocity in the x-direction;
velocity at the edge of gas-phase boun-
dary layer;

tangential velocity at the interface;

free stream gas-phase velocity relative to
the droplet;

gas-phase velocity in the y-direction;
radial gas-phase velocity at the interface;
rate of production of the ith species;
gas-phase tangential coordinate;
gas-phase boundary layer coordinate
normal to the interface;
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Ye, mass fraction of fuel;
Y; mass fraction of ith species.

Greek symbols

a, = 1/pC,, thermal diffusivity;

3, boundary layer thickness;

8,,6,,  the various gas-phase boundary layer
dp, by, thicknesses as defined by equations (a-d);
&, as defined by equation (9a};

n, transformed boundary layer variable de-

fined by equation (9); azimuthal direction
in the spherical polar coordinates;

f, tangential coordinate direction;

Ay thermal conductivity ;

i, viscosity ;

v, kinematic viscosity;

&, stream-wise coordinate direction;

¥, stream function;

¢, dimensionless stream function defined by
equation (33);

2 density;

T, dimensionless time defined by equation
(46);

Ty surface shear stress.

Subscripts

e, edge of the gas-phase boundary layer;
g, gas phase;

A liquid phase;

n, non-dimensional quantities;

s, gas—liquid interface;
o, free stream value;
0, initial value.
Superscripts
’ dimensionless quantities; differentiation
with respect to x in the gas-phase boundary
layer.

L INTRODUCTION

THERE have been a number of studies of isolated liquid
fuel droplet vaporization and combustion with spheri-
cal symmetry [1]. These studies have provided useful
insights to the problem. However, many practical
devices such as gas turbine or rocket combustors etc.
involve droplet vaporization in a hot convective
gaseous stream. Some semi-empirical correlations
exist [2, 3, 4] which account for the convective motion
in the gas phase and express the vaporization rateas a
modification of the spherically symmetric case. These
correlations are not very satisfactory, especially during
the transient period of droplet heating [5].

In many practical high pressure combustors, the
Reynolds number based upon the relative gas—droplet
velocity is large [of O(100)] compared to unity for a
significant part of the droplet lifetime [6]. This high
Reynolds number in the gas phase has been de-
monstrated to imply that the shear stress at the
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gas-liquid interface is large enough to induce internal
liquid-phase circulation [6, 7]. This liguid motion
would be important in determining the heat and mass
transfer (for the multicomponent fuel droplets) within
the droplet and thereby would modify the vapori-
zation rate.

The theoretical prediction of vaporization rate,
including the liquid-phase convective motion, involves
the solution of the coupled equations of motion.
energy, and concentration in the gas and the liquid
phases. The coupling between the conservation equa-
tions in the two phases occurs at the gas-liquid
interface. The liquid-phase motion and the droplet
heating were considered by the authors in a previous
paper [7]. The liquid-phase problem was uncoupled
from the gas phase by specifying the necessary in-
terface conditions; it was shown that the droplet
heating is unsteady and the temperature distribution is
nonuniform for most of the droplet lifetime. In the
present paper, the gas-phase boundary layer analysis
is developed and coupled to the previous liquid-phase
analysis which is modified to account for the changing
droplet size due to vaporization. For the gas phase, an
integral approach is used for the solution of the
viscous, thermal and species concentration boundary
layers.

The droplet vaporization problem with the
gas—liquid coupling is solved for three hydrocarbon
fuels, namely n-hexane, n-decane, and n-hexadecane,
which provide a fairly wide range of volatility. The
results showing the temporal variation of vapori-
zation rate and the temperature distribution within the
droplet are presented and discussed. Some of the
results are compared with the already existing cor-
relations for the droplet vaporization in a convective
field.

In the next section the gas-phase analysis is de-
veloped. In Section III the results of the previous
liquid-phase analysis [7] are summarized and the
thermal core analysis is modified for the changing
droplet radius. In Section I'V the results of the coupled
vaporization problem are presented and compared
with some of the semi-empirical correlations already
existing.

I. GAS-PHASE ANALYSIS

The gas-phase flow over a vaporizing droplet is
essentially unsteady due to the temporal change in the
size of the droplet. The characteristic time for changes
in the gas phase is the residence time in the neigh-
borhood of the droplet, and is of O(d/U , = 10 us) for
a droplet of diameter 100 um and in a free stream
velocity of 10 m/sec. This time is much smaller than the
droplet lifetime which is typically of O(5 msec) for a
droplet of this size vaporizing in a convective field.
Therefore, the quasi-steady gas-phase assumption can
be employed. This assumption will be valid even at
high ambient pressures in the convective vaporization
case although it will not be so in the spherically-
symmetric case.
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For the gas-phase Reynolds number of O(100), the
boundary layer approximation for the gas-phase flow
can be employed with error in the boundary layer
thickness of O(Re™!/2). In this range of Reynolds
number, for flow over a solid sphere, there is a
recirculating wake in the rear stagnation-point region.
The boundary layer approximation cannot represent
the flow correctly in this region since the flow is
essentially elliptic. However, the shear stress and the
heat flux in the wake region are negligible for the
Reynolds number of interest [8], so this region can be
ignored in estimating the overall vaporization rate.
For flow over a liquid droplet, the liquid motion will
shift the point of zero shear stress towards the rear
stagnation point thereby reducing the size of the wake
and thus, the contribution of this region towards
vaporization. Furthermore, the separation point
where the surface velocity goes through zero would be
aft of the zero stress point.

Although the conditions in a combustor are gen-
erally turbulent, since the typical size of a droplet
[diameter of O(100 um)] is much smaller than a typical
large eddy size, a locally laminar boundary layer exists
over the spherical droplet surface if the small distor-
tion of the droplet which may exist at the Weber
number of interest is neglected.

The conservation equations with axial symmetry in
orthogonal boundary layer coordinates (see Fig. 1) for
compressible flow over a sphere can be written neglect-
ing the effect of curvature as follows [10]:

Continuity equation

Opur,) | dlpvry)

0.
Ox dy (1)

Momentum equation in x-direction
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Equation of state

= (% Y‘) RT (5)
Pe\E M)
The normal distance of the droplet surface from the
axis of symmetry is r,(x) and is given by

r{x) = Rsin 6 = Rsin(x/R). (6)

In the above equations, radiation effects and the
mass diffusion due to the temperature and pressure
gradients have been neglected. Further simplification
of the conservation equations was achieved by assum-
ing that the specific heats C,, and the binary diffusion
coefficients D, of all the components are equal. The
further assumptions were made that the Prandtl and
Schmidt numbers in the gas phase are unity and that
the kinetic energy is negligible compared to the
sensible enthalpy which is true for small Mach num-
bers as in a combustor. The enthalpy h used in
equation (3) represents the sensible enthalpy. The
droplet is assumed to vaporize in a hot inert environ-
ment without chemical reaction.

The above system of conservation equations to-
gether with the appropriate boundary conditions and
coupling with the liquid-phase equations form a
complete set of equations to be solved for the gas-
phase flow, and thence the vaporization rate can be
determined. These gas-phase equations are all coupled
to each other due to compressibility and due to
vaporization and heat transfer at the gas-liquid
interface. Further coupling with the liquid-phase equa-
tions of motion and energy to satisfy certain interface
conditions complicates the situation.

However, to determine the vaporization rate in the
hot environment, the details of the boundary layer
profiles are not of so much interest as the heat and
mass transfer, and the shear stress at the interface.
Therefore, a simpler, integral approach is adopted for
solving the gas-phase flow. The integral approach used
is an extension of the Karman—Pohlhausen type of
approach [10] in which the fourth degree polynomial
profiles (for the pure vaporization problem which is
considered here) are assumed for velocity, tempera-
ture, and concentration at any station along the flow.
It is then necessary to satisfy certain boundary and
interface conditions in addition to the integrated forms
of the conservation equations. For the problem of pure
vaporization considered here, it is sufficient to consider
only the fuel conservation equation because the other
species are treated as inert. On integrating equations

x=0 | AXIS OF SYMMETRY

FiG. 1. Orthogonal boundary layer coordinate system.
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(1-4) from y=0 to y=4 (the thickness of the
boundary layer which is assumed to be the same for
momentum, energy and fuel species boundary layers),
we obtain the integrated forms of the conservation
equations

dé g
2y (2 Loy ’i”—:’)él
ue 52 Ty U

dx
( 6“>
(pv)s(1 us)_ "o,
- e P s
pe ue peue

dx u,

( 6YF)

’ ' B

déYF + Eﬁ(l + s ue>5 (pv)s Yo = 6)’ K
N Y O B

where the subscript s represents the value at the
surface, and e represents the value at the outer edge of
the boundary layer. Primes denote differentiation with
respect to x. Notice the appearance of the surface
velocities, u, and v, due to liquid motion and vapori-
zation, respectively, which do not appear for flow over
a solid sphere in the absence of vaporization. The
variables J,, 6,, 8y, and &y, appearing in the above
equations represent the displacement, momentum,
energy and fuel thicknesses, respectively, and are
defined as integrals over the boundary layer thickness
thus

&
0y = { ( ) dy (8a)
8y = J ( - *ﬂ)dy 8b)
Opeue
Sy =f pu (1 ww)dy (8¢)
0 Pelte
5Yr = {. {(Yr — Yr.)dy. (8d)

o0 Pelhe

A term

( 1 dp, 52>

Pe dx

in the integrated momentum equation, and similar
terms in the integrated energy and fuel equations have
been dropped because they are of O(M?) for uniform
ambient temperature and are very small compared to
the other terms for M « 1 which is usually true for
conditions in a combustor.

The various boundary layer thicknesses which have
been defined above can be related to the boundary
layer thickness d(x) if the above integrals can be
evaluated. It is convenient to define a transformed
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variable # related to y as

1 ¥
_ L f L
5 (x) a pe

3x}
5;(x) — J‘ ._p-dy’

0 Pe

where

so0 that the interface y = 0 corresponds to 4 = 0, and
the edge of the boundary layer y = d(x) corresponds to
1 = 1. Polynomial profiles of fourth degree in n are
assumed for velocity, density (or temperature), and fuel
mass fraction. Therefore, let us assume that, in the
boundary layer,

u 4
—= 3 an" (10a)
Ue n=0
o 4
=Y by (10b)
P n=0
4
YF S Z Cnry", (IOC)
n=0

Here, the coefficients a,, b,, ¢, are functions of x and
have to be determined. Such polynomial profiles
cannot be assumed in the presence of a flame sheet
because in that case the profiles will no longer be
monotonically increasing or decreasing. The density
ratio in the boundary layer can be related to the
temperature ratio since the pressure across the boun-
dary layer is constant, and if the gaseous mixture has a
constant average molecular weight and obeys the
perfect gas law, then

Tpe"
i

e

(in

The sensible enthalpy ratio can also be related to the
density ratio by assuming that specific heat C, is
constant in the boundary layer; this is a reasonable
assumption as more fuel with a higher C,, is present
near the surface where temperature is lower, and so has
an opposing effect on C, variation due to composition
and temperature. This constant C, also provides a
great simplification because now the enthalpy can be
expressed as

B T-T, A )
2o L (yor—T).
hoT-T, (1—-7;><,,§0 =T ) 12

where T, = Ty/T, is constant since 7, does not vary
much with x for small Mach number.

The coefficients a,, b,,and ¢, (n = 0, 1,...4) are to be
determined by use of the boundary conditions and of
the integrated conservation equations. The boundary
conditions imposed on the velocity, temperature, and
fuel mass fractions profiles are as follows:

At the gas-liquid interface, ie. at 5 =0, 0r y =0,
u=ux), T=T(x), Yr= Yr (x). (13)

At the outer edge of the boundary layer, i.e. atn = 1,
or y = 8(x),
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ou  J*u

U = u,(x), 5‘)‘) = W = 0, (143)

T
=1, — 0, (14b)

dy

Y,
Yy =0, o (14c)

oy

In the boundary condition at the interface, Y is
related to T, through phase equilibrium. The quantities
u,, T, Y5 ,at the interface are to be determined from the
solution of the liquid-phase equations of motion and
energy. For the gas-phase flow problem, these quan-
tities are assumed to be known. Part of the coupling
between the gas- and liquid-phase equations appears
through these quantities.

The boundary condition at the edge of the boundary
layer requires that the velocity, temperature, and fuel
mass fraction profiles match smoothly to the outside
flow. Therefore, the first two derivatives for velocity,
and the first derivatives for temperature and fuel mass
fraction are set equal to zero. The values of velocity,
temperature, and fuel mass fraction at the edge of the
boundary layer are assumed to be known. Here, it is
assumed that there is no fuel present in the free stream,
although the analysis could be developed with the fuel
present without any great difficulty. This may be the
situation in a combustor or part of it where fuel rich
mixture is present and vaporization takes place under
these conditions, The velocity distribution outside the
boundary layer is assumed to be the potential flow
over a sphere. The velocity field outside the boundary
layer for flow over a solid sphere is not a potential flow
mainly due to boundary layer separation upstream of
the rear stagnation point; however, for flow over a
liquid sphere, the liquid motion moves the zero-shear-
stress point downstream of the corresponding point on
the solid sphere. There is liquid motion in the down-
stream direction even beyond this point. Therefore,
in the absence of any knowledge about the pressure or
velocity fields outside the boundary layer, and without
the elliptic flow problem being solved, the velocity ¢an
be approximated to the potential flow velocity. This
approximation is better for flow over a liquid sphere
than for flow over a solid sphere. Therefore, u,(x) can
be expressed as

3 . {x
u{x) =§Um sin )
where U, is the free stream velocity far upstream.
In addition to the above boundary conditions, it is
required that the original conservation equations

{(1-4) be satisfied at the interface y = 0. This condition
provides the following relations:

(pu)s <5u) (pv)s <au)
—_— — + —
Pelhe ax y=0 peue ay y=0

du, 1187 Ou
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563,

oh oh
(pu), (a)y N + (pv); (5;>y= ,
(15b)
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Additional coupling between the gas and liquid
phases is obtained because of the conservation of fuel
mass flux and heat flux at the interface. These con-
servation conditions can be expressed as

oy,
(pn-g—f) = (pv), (Y, = 1)
Vs

A 0h 2
- = {pr} L+ | A— = (pv), L, (17
(Cp ay)s,a ter) ( aDs.l (ov) an

where L as defined above includes the latent heat of
vaporization and the heat flux into the liquid, which
will be non-zero and positive, then not ail the heat goes
to vaporize the liquid. The subscripts g and I above
refer to the gas phase and liquid phase, respectively.
The assumption that Prandtl and Schmidt numbers
are unity has been made earlier, therefore
A
D=—=yp

‘P

(16)

can be used in the above relations. The two con-
servation conditions, {16} and (17), also provide the
coupling between the temperature and the fuel mass
fraction profiles in the boundary layer.

Now we can look at all the unknowns and the
boundary and interface conditions that are available.
For the velocity profile, we have the five unknown
coefficients, a4 to a,, to be determined. In addition to
these, we have (x), the boundary layer thickness to be
determined. Although d(x) appears in the integrated
energy and fuel conservation equations through &y
and Jy, it will be treated as an unknown for the
velocity profile realizing that all the equations are
coupled. For these six unknowns, we have five boun-
dary conditions given by equations (13), (14a), and
(15a), and one ordinary differential equation given by
(7a) to be satisfied. For the density or temperature
profile, we have five coefficients, b, to b,, and L' the
total heat flux per unit mass, as the six unknowns.
Correspondingly, there are four boundary conditions
given by (13), (14b), and (15b)}, one interface constraint
given by (17), and one ordinary differential equation
{7b} to be satisfied. The fuel mass fraction profile has
the five coefficients, ¢y t0 ¢4, and (pv), or v, which
represents the vaporizing mass flux, as the six un-
knowns. The corresponding four boundary conditions
are given by (13), (14) and (15c), one interface con-
straint is given by (16), and the ordinary differential
equation is given by (7¢). Thus the system of unknowns
and boundary conditions and interface constraints
along with the ordinary differential equations is com-
plete and can be solved. However, it should be realized
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that the profiles for velocity, temperature, etc., cannot
be solved independently since the system of equations
is coupled. It will be possible to eliminate many
unknown coefficients through the algebraic relations
which express the boundary conditions. This is briefly
explained and the important variables to be resolved
are outlined in the following.

To proceed further, it is necessary to change from y
to n for the various integrals and the boundary
conditions. The relation between n and y is given by
equation (9). The thicknesses J,, §,, oy, and dy, can
now be expressed in terms of integrals over n-domain
and they can be related to d(x) as follows:

5 [
o (f’i —1>dn (18a)
6 J 0 P ue/
5 [
% _ 1<1 —1>dn (18b)
6 J ole U,
o (tu h
m_ | X1 18
é/ J Oue( he) 1 ( C)
5, [
e o | L, (18d)
5 Jole

where §'(x) used above is related to §(x) as given after
equation (9). The quantities in the integrals are
polynomials in # as given by (10) and (14), and thus the
integrals can be evaluated in terms of the unknown
coefficients of the polynomials. Similarly, the con-
ditions at the interface given by (15) are transformed
from y to n. Now the further assumption is made that
the product pu is constant across the boundary layer
implying that u is directly proportional to T in the
boundary layer. Therefore

PH = Pel, (19)

which may be a function of x. The various quantities
are non-dimensionalized and written with subscript n
as follows:

u, 3.
~ = 5 Sin X,

T, (20)

Xy =

s Up =

x u
R U,

s Ugn =

Defining Re, = U, R/v,, and non-dimensionalizing
the quantities of the order of boundary layer thickness
with (Re,)*? gives

51
d, = E(Re«)”2

)
6u=§mmm @1

U:n =

US ’
U (Re,)' 2.

Similarly, 8,34, and 6y, are non-dimensionalized. L is
non-dimensionalized as

L, = L/h,.

Since r,x, = Rsinx,, then
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1dry u,

B . A 22
re dx du,/dx (22)

By use of equation (19) and the above non-
dimensionalized quantities, the boundary conditions
and the differential equations after some algebraic
manipulation can be written as below.

The integrated momentum, energy and fuel con-
servation equations (7a—c) now become

dé 1
23— [cos x,(3 + 61,/024)02a
dx, sinx,
— 20,1 — ag)/3bo — 2a,/38,] =0 (23a)
dé 1
iy — {2005 x,) 4 — 20 [(1 = bo)/

dx sin

(1 - T)+ LJ/3bo} =0 (23b)

déy,
dx, +

The relation between the temperature gradient at the
interface (expressed by b,) and the heat flux L,, and the
relation between the fuel mass fraction gradient at the
interface (expressed by ¢,) and the vaporizing mass
flux v,, are obtained from the conservation of energy
and fuel mass fraction at the interface as given by
equations (16) and (17), respectively. These relations
are

sin x [(COS x")éyrn - Usn/?’bo] =0. (23(3)

bl = Usllé;lL;l(l - T;)/bo’
(24)

where

L =T/T
(25)
€1 = Ugbplco — 1)/bo.

Similarly, the relation between a, and §,, between b,
and b,, and between c, and ¢, are obtained from the
relations (15a-c) which have been developed by
requiring that the conservation equations be satisfied
at the interface. The coefficients ay(x), by(x), and cy(x)
which express the tangential velocity, the temperature,
and the fuel mass fraction at the interface are assumed
to be known from the liquid-phase analysis and
provide the coupling between the two phases requiring
an iterative solution for the coupled problem. The
other coefficients of the polynomial profiles, such as a,,
a3, a4, b3, by, ¢3,and ¢, can be expressed in terms of the
coefficients ay, a,, b, by, b1, ¢y, €1, and c,, respectively
through linear algebraic relations. The details of these
relations and other algebraic details are givenin [9]. In
addition to these algebraic relations, the quantities &,
O2m Onm Oy,_are related to J,(x) through the integrals
given by equations (18a-d).

Summarizing, we can say that the unknown quan-
tities to be solved from the coupled nonlinear ordinary
differential equations (23a—c) are J,(x), L,(x) and v,,
(x). Once these quantities are known, shear stress, heat
flux, and mass vaporization rate can be calculated
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using simple algebraic relations [9]. Instead of v,, as
the dependent variable, non-dimensional mass flux
rate was chosen as the dependent variable which is
related to o, by

R (26)

Similarly, b, (x) which is related to L, by equation (24)
was chosen as the dependent variable for convenience
in algebraic manipulation. Shear stress can be easily
calculated from 4, thus:

3
_(Re,)'? = Ssinx it 27)

pU "o,
where a, is related to §, through known algebraic
relations. Heat flux into the liquid can be determined
by taking the difference of total heat flux and the latent
heat flux for vaporization, so

I(T) L L
—i{ A == —-——
he Y/si " he

After substantiai algebraic manipulation [9], the
ordinary differential equations (23a-c) can be written
with 8, my, and b, as the dependent variables. The
forms of these equations, dropping the subscript n for
the non-dimensional quantities for convenience, are

28)

%’ = Siixfl(x,é’,bl,rh;’) = F,(x,8 by, )
(29a)
T (e )
=F, (x,é',bl,rh;',%) (29b)
=F, (x,é’,bl,n':;’, %‘z-, dzf). (29¢)

The functional forms of f}, /3, f5 are very long [9]. In
general, these functions are nonlinear. The equations
{29a-c) are coupled nonlinear ordinary differential
equations and have to be solved simultaneously.

To start the solution of these equations, solution at
some value of x is required. It can be seen that at x = 0
(i.e. at the forward stagnation point), the right-hand
sides of the equations should go to infinity unless the
multiplying functions are zero. So it is required that at
x =0,

fl___o’ f2=0x\ f3=0» (30)

and these conditions provide the starting solution at
the front stagnation point. Now the right-hand sides of
equations (29a—c) are indeterminate, so use is made of
symmetry at x = 0 which requires that the gradients be
zero. Thus, at x =0

dé’ db, dn!
-0 %t &

=0, (31

259

With these starting conditions, equations (29a—c)
are integrated numerically moving forward in the x-
direction; the integration is conducted until the zero-
shear-stress point is reached. Beyond this point the
boundary layer becomes very thick, disallowing the
boundary layer approximation, and the shear stress
and heat and mass fluxes are small in this region for the
Reynolds number of interest.

The gas-phase problem formulated here can be
uncoupled from the liquid-phase equations of motion
and energy if the surface velocity and temperature are
specified and the droplet radius is assumed to be
constant. However, in the coupled problem, the liquid-
phase problem is solved to get the surface velocity and
temperature which are then used as input for the gas-
phase problem. But since the liquid-phase solution
depends on the gas-phase solution due to shear stress
and heat flux at the interface, an iterative solution of
the coupled problem is required.

For the numerical integration of equations {29a-c),
first the stagnation-point solution was obtained by
solving the system of nonlinear coupled algebraic
equations (30). These equations were solved numeri-
cally using the Newton-Raphson technique for
achieving faster convergence to the solution. The
stagnation-point solution was utilized for x < x,,
which is taken to be five steps in the x-direction where
each step equals 0.02. Once this solution was obtained,
a marching procedure was employed for the solution
of the differential equations (29a-c) for x > x,. The
equations (29a—c) were integrated using an explicit
third-order Runge-Kutta scheme [9]. Solution for the
uncoupled gas-phase problem was obtained for a
particular case of ethyl alcohol in air at 1000K at
20 atm. The values of uy/u,, and T, were assumed to be
constant at the interface, although they will vary with x
in the coupled problem. The values chosen for these
quantities were

ufu, = 0.1, T,=353K.

The results of the calculations are shown in Fig. 2. 1t
can be seen from the figure that the non-dimensional
shear stress first increases, reaches a maximum, and
then decreases to zero at about 2.0 radians from the
front stagnation point. The heat and the vaporizing
mass fluxes continually decrease in the downstream
direction due to the increasing boundary layer thick-
ness, and are of the order of 209 of their front
stagnation region values near the zero-shear-stress
point. These quantities will remain small beyond the
zero-shear-stress point for the Reynolds number of
interest, and will be neglected in the present analysis, It
should be noted that the heat flux into the liquid phase
is more than 80 % of the total heat flux at this specified
value of the surface temperature. However, as the
surface becomes heated with time, the fraction of the
total heat flux into the liquid phase will decrease. As we
shall see later from the solution of the coupled
unsteady problem, this fraction stays at a significant
value and therefore the unsteady state vaporization
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F1G. 2. Comparison of results in this paper with available experimental results.

persists for a large part of the droplet lifetime.

il LIQUID-PHASE ANALYSIS

The liquid-phase analysis was performed in a pre-
vious paper [ 7] and the reader is referred to that for the
details. The results of that analysis will be summarized
here, and the analysis for the thermal core will be
modified to account for the decreasing droplet radius.
In the uncoupled liquid-phase analysis, it was shown
{7] that the liquid motion is quasi-steady and consists
of a Hill’s vortex in the droplet core with a thin viscous
boundary layer near the droplet surface and an
inviscid internal wake near the axis of symmetry. In the
viscous boundary layer, the velocity perturbations are
small although the vorticity perturbations are large.
Similarly, there is a thin quasi-steady thermal boun-
dary layer near the droplet surface in which the
temperature gradients are large. The analysis of the
thermal boundary layer is similar to that of the viscous
boundary layer and is coupled to the thermal core in
the matching region.

The droplet core heating was shown to be essentially
unsteady and normal to the closed streamlines*® be-
cause of a very short residence time along a streamline
compared to the droplet lifetime. Therefore, the ortho-

*The axisymmetric stream surfaces will be referred to as
streamlines.

gonal streamline coordinates were used for the energy
equation in the core. However, for a vaporizing droplet
where the radius is decreasing, the closed stream
surfaces cannot retain their shape and size and have to
deform to adjust to the decreasing radius in time. Since
the liquid motion is quasi-steady, this change takes
place in a very short time, and at any instant we have
closed Hill's vortex streamlines. The mass which
vaporizes in any infinitesimal time period is taken to be
all of the liquid between the droplet surface and a
neighboring liquid stream surface at the beginning of
that time period. Therefore, the mass associated with
the center of the vortex, which remains coldest,
vaporizes only at the end. This suggests the use of
orthogonal mass weighted streamline coordinates for
the energy equation in the core when the droplet radius
is decreasing.

The stream function for the Hill's vortex is redefined
so that the center of the vortex corresponds to the zero
value of ¥,

¥ = AR*/8 — Ar*(R? — r?}sin? 4/2. (32

A non-dimensional stream function ¢ is defined such
that its value is zero at the vortex center and unity at
the droplet surface so

¢ = BY/AR* = 1 — 4p*(1 — p?)sin?4,

where p = r/R.
In the orthogonal streamline coordinate system
(&, n), n being in the azimuthal direction, the cor-

(33)
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responding scale factors are
hs = Ar®u, cos®6/2
hy = 1/(ru, sin )

h, rsin,

(34

so that hyh, = 1/u,, where u, is the only velocity
component in the streamwise direction .
A quantity m, proportional to the mass contained
within any closed stream surface, can now be written as
v
m(y) = hyhghedg dy. (3%
0 Jyr=constant
The above quantity can be expressed in terms of the
non-dimensional stream function ¢, noting that

hyh, = 1/u;, and defining a dimensionless function of ¢
as follows:

hdf 8
T ZE‘I:(W- (36)

Y =constant
¢ =constant

Now m, which is a function of ¢ and ¢, becomes

¢
m(@,t) = Raf 9:(6)d¢. (37
o
The time dependence appears through the radius of the
droplet which is decreasing, and g,(¢) is defined by
equation (36).

The orthogonal mass-weighted streamline coor-
dinate system that should be used for the energy
equation in the thermal core is ({, m, n) as explained
earlier. The scale factor associated with the m-
coordinate is

AR
Bp=
™ 8g,(@) Y

In this coordinate system, there is only one component
of velocity u, in the stream-wise direction at any
instant. The energy equation with axial symmetry in

this coordinate system is
b, 0 + 0 hh;; aT
65 h(: & h, am
(39

Since the temperature along any closed contour,
m = constant, is assumed uniform at any instant
because of a rapid recirculation, the coordinate & can
be formally eliminated from the energy equation by
integrating it along this closed contour. Multiplying
throughout by u,, noting that hyh, = 1/u,, and in-
tegrating the above equation along a closed contour,
m = constant, we notice that the second term on the
left-hand side and first term on the right-hand side
vanish because of the continuity of T and

(h,,,h,, i
hs 59

38)

aT ul oT Y
a hé o¢ hgh,,,h
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in the flow field. The energy equation now simplifies to

8g, 0 hhéaT de
AR om h, om/ ™

(40)

19T

uy o Fihedd =

m=constant m=constant

The above equation in {m,!) coordinates has a
moving boundary since the value of m changes at the
core boundary as the droplet vaporizes. Therefore, we
change to (¢, t) in which the value of ¢ is constant at
both the boundaries, i.e. at the center of the vortex and
the core boundary. Before making the change of
variable, we define an average temperature on a
m = constant’ contour (which is also a ‘¢ = constant’
contour at any instant, although the value of ¢ changes
with time) as

av(m,t)-éi—hgdé H;" ‘ﬂ
My

Now the contour integrations in the energy equation
(40) can be changed to a ‘¢ = constant’ contour at any
instant, realizing that the velocity field, the droplet
radius, and ¢ change very little for the corresponding
m = constant’ contour during the short residence time
along such a contour. However, the time derivative on
the left-hand side of the equation is still taken with m
kept constant, since the change in average temperature
on a ‘m-constant’ contour is on a time scale which is
comparable to the lifetime of the droplet. Further-
more, we define the average temperature gradientona
closed contour as follows:
0T,

h,\oT
R (IS

Now given the relations between h, and h,, and
between m and ¢, and the definitions of average
temperature and its gradient as above, the energy
equation (40) can be written in the (m, ) coordinate

(41)

hedd = —

system as
0T, f hedl 8o, @ aTav 89, n
6t§ u, AR om| ém AR ¢]@d
Defining
h.dé&
gl(¢)~~—— =
Uy

as given by (36), and

8 [(h,
e s

and changing to the (¢,t) system, we can write the
energy equation in the form

aT,, 3dR
0:(9) 5 [R dtf 1(¢’d¢]a¢

o [
R o

g1(9) (44)

] 45)
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Temperature and time are non-dimensionalized thus

T.:iv T()
T;v = T
L-T,

t = ot/R2, (46)

where R, is the initial radius of the droplet. The energy
equation can now be written as

0Ty _ T, 0T,
(31: - a(d),f) 6¢2 + b((b,f) (’3(1) * (47)
where
_ Rf(z) 92(9)
4=k gy
and
_R3d[ga(@)] 1 3dR [
M00=% "4 qe) TR & L“
(¢)dd'/g(D).
(48)

The form of the energy equation (47) is identical to
the one given by (26) in [ 7] except for the dR/d7 term in
b(¢, 7), and the (R2/R?) terms which appear due to the
changes in the droplet radius. The boundary con-
ditions to equation (47) are the same as in [7]. These
are as follows:

(i) At the core boundary, i.e. ¢ = ¢,
Ty,
o
(ii) At the center of the vortex, i.e. at ¢ =0, the
temperature is a regular function of ¢, and
therefore
oT,,
ot

= C,1).

aT,
= b(¢,T) — —.
6.9-"5
(iit) In addition to these boundary conditions, the
initial condition is that at 7 = 0,

T, =0.

In the boundary condition (i) above, the tempera-
ture gradient C,(t) is obtained by requiring the
continuity of heat flux in the matching region of the
thermal boundary layer and the thermal core. The
energy equation in the thermal core is solved numeri-
cally using a Crank-Nicholson type of scheme and the
solution is marched forward in time, solving the gas-
phase equations and the liquid-phase equations of
motion, and thermal boundary layer equations at each
instant.

1V. SOLUTION OF THE COUPLED PROBLEM,
RESULTS AND DISCUSSION
In the coupled problem with vaporization, first the
gas-phase boundary layer is solved using the initial
guess or the relaxed previous iterated values for surface
velocity U, and the surface temperature 7,. With the
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shear stress and the heat flux from the gas-phase
solution, the liquid-phase viscous and thermal boun-
dary layers and then the thermal core are resolved. The
gas-phase and liquid-phase solutions are iterated until
the required convergence is achieved. The new droplet
radius corresponding to the next time step is calculated
and the process repeated at the advanced time. Since
the droplet gets heated in time, the liquid viscosity and
thus the strength of the Hill’s vortex are updated in
time. The calculations in time are continued until the
square root of the droplet mass is 309 of the original
value, implying that the droplet mass left is about 99
of the original mass. The details of the calculation
procedure are given in [9].

The overall vaporization rate at any instant is
calculated by integrating the vaporizing flux over the
droplet surface. Therefore, the mass vaporization rate
and the time rate of change of droplet radius at any
instant can be expressed by

0

dR = — IJ‘ my sin 6 d6, (49)

dr 20, ) o
where m; is the vaporizing mass flux and is integrated
up until the zero-shear-stress point 8, since the
contribution of the region beyond this point is small
for the Reynolds number of interest and cannot be
calculated with the boundary layer approximation.

The coupled problem was solved for three hy-
drocarbon fuels in air at 1000 K and 10 atm. The three
fuels chosen were n-hexane, n-decane, and »-
hexadecane to get a fairly wide range of volatility. The
results of computation with these three fuels are
plotted in Figs. 3-5 which show the variation of
(R/R)*? and the non-dimensional average vaporizing
mass flux (m}) scaled with the instantaneous gas-phase
Reynolds number. This is a rational choice for pre-
sentation of the results since, in the limits of a quasi-
steady, high-Reynolds-number system, (R/Rp)> is
linear in time. Naturally, its derivative is constant in
that limit. When the gas-phase Reynolds number is
changing due to the droplet radius alone, as assumed
in the present study, the average vaporizing mass flux
is proportional to the derivative (d(R/Ry)*?)/dz. As
seen from the figures, the slope of the (R/R,)*/? curve is
initially small due to the small vaporization rate and
the heating of the droplet. This slope and the average
mass flux increase rather sharply for the more volatile
fuel, n-hexane, and gradually for the less volatile fuels,
n-decane and n-hexadecane. As the droplet gets hea-
ted, the change in average vaporizing mass flux is
slower and tends towards an asymptotic value. The
slope of the average mass flux curve is much smaller for
n-hexane than for n-hexadecane towards the end. This
behavior is also shown in Fig. 6 which shows the
variation of droplet surface temperature at the § = 90°
point, and the temperature at the center of the vortex.
The surface temperature rises sharply for the more
volatile fuel, and later the change becomes smaller.
Note that the surface temperature for each of the three
fuels is less than the boiling point of the fuel (more so,
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for the less volatile fuel) even at the end of the droplet
lifetime. Here and in the following discussion, the end
of the droplet lifetime will refer to the instant when
(R/Ro)*"* = 0.3 because more than 90 %; of the original
mass has vaporized, and the computation is not
carried on beyond this time. Note that the Reynolds
number decreases only by a factor of about two up to
this point, so that the high Reynolds number approxi-
mation remains valid throughout the calculation.
The temperature at the center of the vortex which is
cold initially rises with time as seen from Fig. 6. The
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vortex center temperature is about 20°C lower for
hexadecane and about 6°C lower for hexane, and in
between the two for decane, even at the end of droplet
lifetime. It is considerably lower than the droplet
surface temperature during the earlier part of the
lifetime. Therefore, the uniform temperature assum-
ption seems to be inappropriate for most of the droplet
lifetime.

Figure 7 shows the variation of non-dimensional
average heat flux, scaled with instantaneous Reynolds
number, with time for the three fuels. Similarly, Fig. 8
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shows the heat flux distribution over the droplet
surface at different instants for n-decane. As seen from
these figures, the heat flux into the liquid phase for
hexaneis about 79, of the total heat flux on the gas side
at the end of the droplet lifetime. For hexadecane 259,
and for decane about 179 of the total heat flux goes
into the liquid phase even at the end of the droplet
lifetime. The fraction is still larger for all three fuels in
the earlier part of their lifetime. This explains the
nature of the curves in Figs. 3-6, the more volatile fuel
like hexane being closer to a quasi-steady state sit-
uation toward the end of the droplet lifetime than the
less volatile fuels viz. decane and hexadecane.

A comparison of our results with the
Ranz-Marshall type correlation [3] and with the

Spalding correlation {4] was made for the vapori-
zation rate. The two correlations are

Ranz—-Marshall type correlation
m = (1 + 0.276 Re}? Pr}?),
Spalding correlation

" A _ 053 B%5 Re}”.
i

In using the above correlations, the heat of vapori-
zation was modified to take into account the heat flux
into the liquid phase; the modified heat of vapori-
zation was calculated using our results for the average
heat flux into the liquid phase as shown in Fig. 7. The
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temporal variation of average mass flux using the
above correlations is shown in Figs. 3--5 for the three
fuels. A comparison with our results shows that the
agreement with the Ranz—Marshall correlation is
good during the initial part of the lifetime when the
vaporization rate is small. The agreement with the
Spalding correlation is better during the later part of
the lifetime. It should be noted that the Spalding
correlation is suggested for values of B between 0.6 and
5, but the value of B with modification for the liquid-
phase heat flux is smaller than 0.6 during the initial
part of the lifetime. However, our values towards the
end of the lifetime are lower than the values of the two
correlations by about 15-20%,. This difference could
be due to the neglect in our calculations of the wake
region which has a bigger contribution towards vapo-
rization when the droplet is heated than in the initial
part of the dropilet lifetime when it is cold. It should be
noted, however, that the Spalding correlation was
based on experiments with a gas-phase Reynolds
number between 800 and 4000, and the scatter of the
experimental results was about 15-20%. The
Ranz—-Marshall experiments were also conducted for
small values of transfer number B. The above com-
parison suggests that it may be possible to use some
empirical correlations like the above two for vapori-
zation rate, if the liquid heat flux is taken into account.
However, the calculation of the liquid heat flux would
require the solution of the unsteady coupled problem
for the gas and the liquid phase.

For a comparison of the droplet lifetime for the three
fuels, the curves for (R/R,)*"? vs 1 are plotted on the
same graph in Fig. 9. Since the time scale is non-
dimensionalized with the thermal diffusion time R2/a,,
the variations in the droplet lifetime for the three fuels
are mainly due to the differences in their volatilities ; it
can be seen from the figure that the variations in the
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lifetimes for the three fuels are only about 109,
although their volatilities are quite different. However,
the vaporization rates in the initial part of the lifetime
are substantially smaller for the less volatile fuels, as
can be seen from Fig. 9, and this will have significant
effect in determining the overall lifetime when con-
sidering spray burning in a combustor. In such a
situation, there will be a flame front approaching the
droplets which are still heating and therefore, the more
volatile fuel and the fuel with lower heat of vapori-
zation will have more fuel present to enhance the rate
of propagation of the flame front and thereby further
increase the rate of vaporization and reduce the overall
droplet lifetime. The reason for the small variation in
the overall lifetime of a single droplet is that the surface
temperature for the less volatile fuel rises quickly to a
high value in a very short time during which the quasi-
steady thermal boundary layer is established. This
time is of O(Pe; ') R3/a;, and is very small and is
neglected in the present analysis. This can be seen from
Fig. 6 which shows the initial surface temperature to be
346 K for hexane, 384K for decane, and 428 K for
hexadecane. After the initial establishment of the
thermal boundary layer, the surface temperature rises
quickly initially and then slowly, so that the less
volatile fuel is always at a higher temperature at any
time, and the droplet lifetime is not significantly
affected due to the differences in volatility. Of course,
different results can be expected if the ambient gas
temperatures were not so high.

Figure 10 shows the temperature distribution inside
the thermal core for a decane droplet at various
instants. As can be seen from this figure, the droplet
temperature becomes uniform only towards the end of
the droplet lifetime indicating that the droplet heating
is essentially unsteady.

The question arises as to the importance of the
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internal circulation for the dropiet vaporization char-
acteristics. The internal circulation model lies between
two extreme models: (a) a pure conduction model
without any circulation, and (b) a rapid-mixing model.
The pure conduction model is a proper limit for zero
vortex strength. The rapid-mixing model is the result
of faulty reasoning whereby infinite circulation rates
are considered to lead to uniform liquid temperature
immediately. However, the internal circulation model
shows that at large vortex strength, the temperature
profile is independent of vortex strength and still
nonuniform. Internal circulation leads to a shorter
characteristic heating length than in the pure con-
duction case. In particular, the distance from the
droplet surface to the vortex center is a factor of about
three less than the droplet radius. This implies that the
characteristic heating time (which is proportional to
length squared) decreased by about an order of
magnitude due to internal circulation. Once the circu-
lation time is short compared to the heating time, the
heating time is independent of the circulation time (or
essentially independent of the vortex strength). The
heating time is defined as the time required to reach a
nearly uniform temperature profile in the droplet; it is
not necessarily the time required to bring the droplet
to a final temperature. In some cases, the droplet
temperature will still be increasing at the end of the
droplet lifetime. 1t is expected that the internal circu-
lation via increased heat transfer rates to the droplet
interior will yield lower surface temperatures and
lower vaporization rates during the initial portion of
the droplet lifetime than would be achieved with pure
conduction only. The rapid-mixing model should yield
still lower vaporization rates during this initial
portion.

Less sophisticated models, such as the rapid-mixing
model, may give acceptable results for the droplet
lifetime. However, in certain situations with moving
droplets, an accurate evaluation of the spatial va-
riation of the fuel vapor source strength is required. In
such cases, the present type of analysis of the transient
phenomenon should be superior.

Summarizing all the above results for an isolated
droplet, it can be concluded that the unsteadiness in
droplet vaporization persists for most of the dioplet
lifetime, especially so for the less volatile fuels. The
temperature distribution inside the droplet is nonuni-
form for most of the lifetime; the difference between
the surface temperature and the temperature in the
interior is higher for the heavier and less volatile fuels.
The Ranz-Marshall and the Spalding correlations
seem to agree well when the heat flux into the liquid
phase is taken into account by modifying the heat of
vaporization. The two correlations give higher values
for the average mass flux than ours, possibly due to the
neglect of the wake region in our calculations.
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THEORIE DE LA VAPORISATION CONVECTIVE DES GOUTTES AVEC
TRANSFERT THERMIQUE VARIABLE DANS LA PHASE LIQUIDE

Résumé — On analyse le probléme de la vaporisation d’une goutte liquide dans un environnement gazeux
convectant. On développe une nouvelle analyse pour une phase gazeuse visqueuse, pour des couches limites
de température et de concentration d’espéces, en utilisant une approche intégrale. L’analyse de la phase
gazeuse est couplée a une forme modifiée de I'analyse de la phase liquide selon S. Prakash et W. A. Sirignano,
Int. J. Heat Mass Transfer 21, 885-895 (1978). Le couplage est résolu pour trois hydrocarbures (n-hexane, n-
décane et n-hexadecane). Les résultats montrent que la vaporisation de la goutte est variable et que la
distribution de température dans la goutte n’est pas uniforme pendant une grande période de la durée de vie
de la goutte. Quelques résultats sont comparés aux relations données antérieurement aprés les avoir
corrigées pour le flux thermique dans la phase liquide.

THEORIE DER KONVEKTIVEN TROPFCHENVERDUNSTUNG MIT
VERANDERLICHEM WARMETRANSPORT IN DER ZIRKULIERENDEN
FLUSSIGEN PHASE

Zusammenfassung — Es wird das Problem der Verdunstung von Fliissigkeitstropfchen in eine heile,
gasformige Umgebung, die sich in Konvektionsbewegung befindet, behandelt. Mit Hilfe einer Integralnihe-
rung wurde fiir die Beschreibung der Viskositits-, Warmeleitungs- und Konzentrationsgrenzschichten der
Gasphase ein neues Berechnungsverfahren entwickelt. Die Berechungsmethode fiir die Gasphase wurde mit
einer abgewandelten Form einer frilheren Berechnungsmethode fiir die innere Bewegung und den
Wirmetransport in der Fliissigkeitsphase gekoppelt [S. Prakash und W. A. Sirignano, Int. J. Heat Mass
Transfer 21, 885-895 (1978)]. Das gekoppelte Problem wurde fiir drei Kohlenwasserstoff-Brennstoffe (n-
Hexan, n-Decan und n-Hexadecan) gelost. Die Ergebnisse zeigen, daB die Tropfchenverdunstung unstetig
verlduft und daB die Temperaturverteilung innerhalb des Tropfchens wihrend einer bedeutenden Zeit der
Lebensdauer der Tropfchen ungleichférmig ist. Einige Ergebnisse werden mit den bereits vorhandenen
Korrelationen verglichen, nachdem jene zur Beriicksichtigung des Wérmestroms in der fliissigen Phase
korrigiert wurden.

TEOPUA KOHBEKTHUBHOI'O UCIMMAPEHHUSA KAIIJIW ITPU HECTAUMOHAPHOM
MMEPEHOCE TEIUIA B LIUPKYJIMPYIOILENA XUOKON ®A3E

AHHOTaUHR — AHa/lM3HpyeTCs npodjieMa MCiapeHHs XKHIAKOH KalllM B HarpeToil KOHBEKTHBHOW raso-
ol cpene. C NOMOILLIO HHTErpajibHOro MeToAa pa3paboTaH HOBBIA Cnoco® aHanNM3a BABKOCTHOIO
TEMJOBOrO H KOHUEHTPALUMOHHOTO MOrPaHHYHOTO CJjios B ra3oBoil ¢dase. [laHHbIH aHanu3 HCnoJb-
3y€TC COBMECTHO ¢ MOAH(DHLKPOBAHHBIM aHAJIM30M [UIS XMIKOH (asbl, NpelUIOKEHHBIM paHee s
cily4ast BHYTPEHHero JABHXeHus u Tenioneperoca [[Ipakamx n Cupurnano, Mexayraponusiit XKypHas
Tenno- 1 Macconepenoc, 21, 885-895 (1978)]. ConpsxenHas 3amava pewiaercs Ans TpEX YrJIeBOAO-
POAHBIX TOIIMB (n-rekcaH, n-A€KaH M n-rexcanexkaH). Pe3yjbTaThl NOKa3bIBAIOT, YTO NPOILECC HCMa-
PEHHS KAl ABJISETCS HECTALMOHAPHBIM, a pacnpeiesieHHe TeMIepaTyp BHYTPH Kalji — HEOJHOPO/-
HBIM B TeueHHe OOMbLIETO NPOMEXYTKAa BPEMEHHM CYILIECTBOBAaHHA KamiH. [IpoBeneHO cpaBHeHHe
YACTH MOJYYEHHBIX PE3YJbTATOB C MMEIOIUMMHUCSH COOTHOIIEHHSAMH ¢ YYETOM MONPABOK Ha TENJIOBOI
MOTOK B XHIKYIO (da3y.



