
int J. Heltt Mus.s Tmm&r. Vol. 23, pp. 253-268 
Q Pergamon Press Ltd. 1980. Printed m Great Britain 

0017.9310!80/0301.0253 %aZ.#Q 

THEORY OF CONVECTIVE DROPLET VAPORIZATION 
WITH UNSTEADY HEAT TRANSFER 

IN THE CIRCULATING LIQUID PHASE 

S. PRAKASH and W. A, SIRIGNAN~ 

Department of Mechanical and Aerospace Engineering, 
Princeton University, Princeton, NJ 08540, U.S.A. 

(Received 27 November 1978 and in reuised form 21 May i979) 

Abstract-The problem of liquid droplet vaporization in a hot convective gaseous environment is analyzed. 
A new gas-phase viscous, thermal and species concentration boundary layer analysis is developed using an 
integral approach. The gas-phase analysis is coupled with a modified form of a previous liquid-phase analysis 
for the internal motion and heat transfer [S. Prakash and W. A. Sirignano, Inr. J. Heat Mass Transfer 21, 
885-895 (1978)]. The coupled problem is solved for three hydrocarbon fuels (n-hexane, n-decane, and n- 
hexadecane). The results show that the droplet vaporization is unsteady, and that the tem~ra~ure 
distribution within the droplet is nonuniform for a significant part of the droplet lifetime. Some of the results 
are compared with the already existing correlations after correcting them for the heat flux into the liquid 
phase. 

NOMENCLATURE 

as defined by equation (48) ; 
coefficients of the gas-phase velocity 
profile ; 
strength of Hill’s vortex ; 
as defined by equation (48); 
coefficients of the gas-phase density 
profile ; 
Spalding’s transfer number ; 
coefficients of the fuel mass fraction 
profile ; 
as given by the boundary condition (i) of 
equatjon (47); 
specific heat at constant pressure; 
droplet diameter; 
diffusion coefficient ; 
dimensionless function as defined by 
equation (36); 
dimensionless function as defined by 
equation (44); 
sensible enthalpy of the gaseous mixture; 
total enthalpy including the chemical 
enthalpy of species i ; 
scale factor in m-direction as defined by 
equation (38); 
scale factor in stream-wise direction ; 
scale factor in ~-direction; 
scale factor in the aximuthal direction ; 
heat of vaporization of the fuel; 
modified heat of vaporization as defined 
by equation (17); 
mass-weighted streamline coordinate de- 
fined by equation (35); 
mass vaporization rate with gas-phase 
convection ; 
mass vaporization rate with spherically 
symmetric vaporization; 
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vaporizing mass flux ; 
average vaporizing mass flux ; 
Mach number ; 
molecular weight of ith species; 
the order of ( ); 
pressure, also non-dimensional radius; 
Prandtl number ; 
average heat flux ; 
radial distance in spherical polar coor- 
dinate system; 
normal distance of the interface from the 
axis of symmetry; 
droplet radius; 
gas constant ; 
Reynolds number based on radius ; 
gas-phase Reynolds number based on 
diameter ; 
time ; 
temperature; 
average temperature on a closed stream 
surface as defined by equation (41); 
boiling point of the liquid ; 
temperature at the edge of gas-phase 
boundary layer ; 
initial temperature; 
interface temperature ; 
gas-phase velocity in the x-direction; 
velocity at the edge of gas-phase boun- 
dary layer ; 
tangential velocity at the interface; 
free stream gas-phase velocity relative to 
the droplet ; 
gas-phase velocity in the y-direction ; 
radial gas-phase velocity at the interface ; 
rate of production of the ith species; 
gas-phase tangential coordinate ; 
gas-phase boundary layer coordinate 
normal to the interface; 



y,, mass fraction of fuel; 

yi, mass fraction of ith species. 

Greek symbols 

a, = I/PC,, thermal diffusivity ; 
4 boundary layer thickness ; 

6,,&, the various gas-phase boundary layer 
ZjH, SYF, thicknesses as defined by equations (a-d j ; 
6’7 as defined by equation {9a); 

% transformed boundary layer variable de- 
fined by equation (9); azimuthal direction 
in the spherical polar coordinates ; 

0, tangential coordinate direction ; 
4 thermal conductivity ; 

/A viscosity ; 
V, kinematic viscosity ; 

;, 

stream-wise coordinate direction; 
stream function ; 

4% dimensionless stream function defined by 
equation (33); 

P. density; 

r, dimensionless time defined by equation 

(46); 
% surface shear stress. 

Subscripts 

edge of the gas-phase boundary layer ; 
gas phase ; 
liquid phase ; 
non-dimensional quantities; 
gas-liquid interface; 
free stream value; 
initial value. 

Superscripts 

9 dimensionless quantities; differentiation 
with respect to x in the gas-phase boundary 
layer. 

I. INTRODUCTION 

THERE have been a number of studies of isolated liquid 
fuel droplet vaporization and combustion with spheri- 
cal symmetry [l]. These studies have provided useful 
insights to the problem. However, many practical 
devices such as gas turbine or rocket combustors etc. 
involve droplet vaporization in a hot convective 
gaseous stream. Some semi-ernp~~~l correlations 
exist [Z, 3, 43 which account for the convective motion 
in the gas phase and express the vaporization rate as a 
modification of the spherically symmetric case. These 
correlations are not very satisfactory, especially during 
the transient period of droplet heating [S]. 

In many practical high pressure combustors, the 
Reynolds number based upon the relative gas-droplet 
velocity is large [of O(lOO)] compared to unity for a 
significant part of the droplet lifetime [6]. This high 
Reynolds number in the gas phase has been de- 
monstrated to imply that the shear stress at the 

gas-liquid interface is large enough to induce internal 
liquid-phase circulation [6, 71. This liquid motion 
would be important in determining the heat and mass 
transfer (for the multicomponent fuel droplets) within 
the droplet and thereby would modify the vapori- 
zation rate. 

The theoretical prediction of vaporization rate, 
including the liquid-phase convective motion, involves 
the solution of the coupled equations of motion. 
energy, and concentration in the gas and the liquid 
phases. The coupling between the conservation equa- 
tions in the two phases occurs at the gas-liquid 
interface. The liquid-phase motion and the droplet 
heating were considered by the authors in a previous 
paper [7]. The liquid-phase problem was uncoupled 
from the gas phase by specifying the necessary in- 
terface conditions; it was shown that the droplet 
heating is unsteady and the temperature distribution is 
nonuniform for most of the droplet lifetime. In the 
present paper, the gas-phase boundary Iayer analysis 
is developed and coupled to the previous liquid-phase 
analysis which is modified to account for the changing 
droplet size due to vaporization. For the gas phase, an 
integral approach is used for the solution of the 
viscous, thermal and species concentration boundary 
layers. 

The droplet vaporization problem with the 
gas-liquid coupling is solved for three hydrocarbon 
fuels, namely n-hexane, n-decane, and n-hexadecane, 
which provide a fairly wide range of volatility. The 
results showing the temporal variation of vapori- 
zation rate and the temperature distribution within the 
droplet are presented and discussed. Some of the 
results are compared with the already existing cor- 
relations for the droplet vaporization in a convective 
field. 

In the next section the gas-phase analysis is de- 
veloped. In Section III the results of the previous 
liquid-phase analysis [7] are summarized and the 
thermal core analysis is modified for the changing 
droplet radius. In Section IV the results of the coupled 
vaporization problem are presented and compared 
with some of the semi-empirical correlations already 
existing. 

II. GAS-PHASE ANALYSIS 

The gas-phase ilow over a vaporizing droplet is 
essentially unsteady due to the temporal change in the 
size of the droplet. The characteristic time for changes 
in the gas phase is the residence time in the neigh- 
borhood of the droplet, and is of O(d/U., = 10 ,us) for 
a droplet of diameter 1OOpm and in a free stream 
velocity of 10 m/set. This time is much smaller than the 
droplet lifetime which is typically of 0(5 msec) for a 
droplet of this size vaporizing in a convective field. 
Therefore, the quasi-steady gas-phase assumption can 
be employed. This assumption will be valid even at 
high ambient pressures in the convective vaporization 
case although it will not be so in the spherically- 
symmetric case. 
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For the gas-phase Reynolds number of 0( lOO), the 
boundary layer approximation for the gas-phase flow 
can be employed with error in the boundary layer 
thickness of O(Re-I/‘). In this range of Reynolds 
number, for flow over a solid sphere, there is a 
recirculating wake in the rear stagnation-point region. 
The boundary layer approximation cannot represent 
the flow correctly in this region since the flow is 
essentially elliptic, However, the shear stress and the 
heat flux in the wake region are negligible for the 
Reynolds number of interest [8], so this region can be 
ignored in estimating the overall vaporization rate. 
For flow over a liquid droplet, the liquid motion will 
shift the point of zero shear stress towards the rear 
stagnation point thereby reducing the size of the wake 
and thus, the contribution of this region towards 
vaporization. Furthermore, the separation point 
where the surface velocity goes through zero would be 
aft of the zero stress point. 

Although the conditions in a combustor are gen- 
erally turbulent, since the typical size of a droplet 
[diameter of 0( 100 pm)] is much smaller than a typical 
large eddy size, a locally laminar boundary layer exists 
over the spherical droplet surface if the small distor- 
tion of the droplet which may exist at the Weber 
number of interest is neglected. 

The conservation equations with axial symmetry in 
orthogonal boundary layer coordinates (see Fig. 1) for 
compressible flow over a sphere can be written neglect- 
ing the effect of curvature as follows [lo] : 

Continuity equation 

@w-J Our,) 
ax 

~ = 0. 
+ aY 

Momentum equation in x-direction 

(1) 

Energy equation 

ah a p “ax ( + = 
5 

;(D,!$ i=i 
(3) 

Species equation 

i = 1,2,. ., N. 

Equation of state 

(5) 

The normal distance of the droplet surface from the 
axis of symmetry is r,(x) and is given by 

r,(x) = R sin 0 = R sin(x/R). (6) 

In the above equations, radiation effects and the 
mass diffusion due to the temperature and pressure 
gradients have been neglected. Further simplification 
of the conservation equations was achieved by assum- 
ing that the specific heats C,? and the binary diffusion 
coefficients D1 of all the components are equal. The 
further assumptions were made that the Prandtl and 
Schmidt numbers in the gas phase are unity and that 
the kinetic energy is negligible compared to the 
sensible enthalpy which is true for small Mach num- 
bers as in a combustor. The enthalpy h used in 
equation (3) represents the sensible enthalpy. The 
droplet is assumed to vaporize in a hot inert environ- 
ment without chemical reaction. 

The above system of conservation equations to- 
gether with the appropriate boundary conditions and 
coupling with the liquid-phase equations form a 
complete set of equations to be solved for the gas- 
phase flow, and thence the vaporization rate can be 
determined. These gas-phase equations are all coupled 
to each other due to compressibility and due to 
vaporization and heat transfer at the gas-liquid 
interface. Further coupling with the liquid-phase equa- 
tions of motion and energy to satisfy certain interface 
conditions complicates the situation. 

However, to determine the vaporization rate in the 
hot environment, the details of the boundary layer 
profiles are not of so much interest as the heat and 
mass transfer, and the shear stress at the interface. 
Therefore, a simpler, integral approach is adopted for 
solving the gas-phase flow. The integral approach used 
is an extension of the Karman-Pohlhausen type of 
approach [lo] in which the fourth degree polynomial 
profiles (for the pure vaporization problem which is 
considered here) are assumed for velocity, tempera- 
ture, and concentration at any station along the flow. 
It is then necessary to satisfy certain boundary and 
interface conditions in addition to the integrated forms 
of the conservation equations. For the problem of pure 
vaporization considered here, it is sufficient to consider 
only the fuel conservation equation because the other 
species are treated as inert. On integrating equations 
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FIG. 1. Orthogonal boundary layer coordinate system. 
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(l-4) from ~1 = 0 to y = S (the thickness of the 
boundary layer which is assumed to be the same for 
momentum, energy and fuel species boundary layers), 
we obtain the integrated forms of the conservation 
equations 

Vb) 

where the subscript s represents the value at the 
surface, and e represents the value at the outer edge of 
the boundary layer. Primes denote differentiation with 
respect to x. Notice the appearance of the surface 
velocities, u, and u,, due to liquid motion and vapori- 
zation, respectively, which do not appear for flow over 
a solid sphere in the absence of vaporization. The 
variables 6,, ba, 6,, and &? appearing in the above 
equations represent the daplacement, momentum, 
energy and fuel thicknesses, respectively, and are 
defined as integrals over the boundary layer thickness 
thus 

A term 

in the integrated momentum equation, and similar 
terms in the integrated energy and fuel equations have 
been dropped because they are of O(iW’) for uniform 
ambient temperature and are very small compared to 
the other terms for M << 1 which is usually true for 
conditions in a combustor. 

The various boundary layer thicknesses which have 
been defined above can be related to the boundary 
layer thickness S(x) if the above integrals can be 
evaluated. It is convenient to define a transformed 

variable q related to y as 

where 

(9) 

so that the interface y = 0 corresponds to q = 0, and 
the edge of the boundary layer 4’ = 6(x) corresponds to 
rf = 1. Polynomial profiles of fourth degree in q are 
assumed for velocity, density (or temperature), and fuel 
mass fraction. Therefore, let us assume that, in the 
boundary layer, 

(lOa) 

(lob) 

Here, the coefficients a, b, c, are functions of x and 
have to be determined. Such polynomial profiles 
cannot be assumed in the presence of a flame sheet 
because in that case the profiles will no longer be 
monotonicaly increasing or decreasing. The density 
ratio in the boundary layer can be related to the 
temperature ratio since the pressure across the boun- 
dary layer is constant, and if the gaseous mixture has a 
constant average molecular weight and obeys the 
perfect gas law, then 

(11) 

The sensible enthalpy ratio can also be related to the 
density ratio by assuming that specific heat C, is 
constant in the boundary layer; this is a reasonable 
assumption as more fuel with a higher C, is present 
near the surface where temperature is lower, and so has 
an opposing effect on C, variation due to composition 
and temperature. This constant C, also provides a 
great simplification because now the enthalpy can be 
expressed as 

h T- To 1 -=--------_~__ 
he K-r, (l--T,) 

, (12) 

where T, = To/T, is constant since T, does not vary 
much with x for small Mach number. 

The coefficients a,, b,, and cm, (n = 0, 1, . .4) are to be 
determined by use of the boundary conditions and of 
the integrated conservation equations. The boundary 
conditions imposed on the velocity, temperature, and 
fuel mass fractions profiles are as follows : 

At the gas-liquid interface, i.e. at 11 = 0, or 2’ = 0, 

u = u,(x), T = 7;(x), YF = YF,(x). (13) 

At the outer edge of the boundary layer, i.e. at q = 1, 
or y = 6(x), 
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U4b) 

y -0 au,=, 
F- I ay * 

In the boundary condition at the interface, Y, is 
related to T, through phase equilibrium. The qua&es 
u,, T,, I',$, at the interface are to be determined from the 
solution of the liquid-phase equations of motion and 
energy. For the gas-phase flow problem, these quan- 
tities are assumed to be known. Part of the coupling 
between the gas- and liquid-phase equations appears 
through these quantities. 

The boundary condition at the edge of the boundary 
layer requires that the velocity, temperature, and fuel 
mass fraction profiles match smoothly to the outside 
flow. Therefore, the first two derivatives for velocity, 
and the first derivatives for temperature and fuel mass 
fraction are set equal to zero. The values of velocity, 
temperature, and fuel mass fraction at the edge of the 
boundary layer are assumed to be known. Here, it is 
assumed that there is no fuel present in the free stream, 
although the analysis could be developed with the fuel 
present without any great difficulty. This may be the 
situation in a combustor or part of it where fuel rich 
mixture is present and vaporization takes place under 
these conditions. The velocity distribution outside the 
boundary layer is assumed to be the potential Aow 
over a sphere. The velocity field outside the boundary 
layer for flow over a solid sphere is not a potential flow 
mainly due to boundary layer separation upstream of 
the rear stagnation point; however, for flow over a 
liquid sphere, the liquid motion moves the zero-shear- 
stress point downstream of the corresponding point on 
the solid sphere. There is liquid motion in the down- 
stream direction even beyond this point. Therefore, 
in the absence of any knowledge about the pressure or 
velocity fields outside the boundary layer, and without 
the elliptic flow problem being solved, the velocity can 
be approximated to the potential flow velocity. This 
approximation is better for flow over a liquid sphere 
than for flow over a solid sphere. Therefore, u,(x) can 
be expressed as 

3 
u,(x) = -U, sin f 

2 0 
, 

where U, is the free stream velocity far upstream. 
In addition to the above boundary conditions, it is 

required that the original conservation equations 
(l-4) be satisfied at the interface y = 0. This condition 
provides the following relations : 

Additional coupling between the gas and liquid 
phases is obtained because of the conservation of fuel 
mass flux and heat flux at the interface. These con- 
servation conditions can be expressed as 

(16) 

(PULL’, (17) 

where L’ as defined above includes the latent heat of 
vaporization and the heat flux into the liquid, which 
wiil be non-zero and positive, then not all the heat goes 
to vaporize the liquid. The subscripts g and 1 above 
refer to the gas phase and liquid phase, respectively. 
The assumption that Prandtl and Schmidt numbers 
are unity has been made earlier, therefore 

d 
D =-_= 

c, p 

can be used in the above relations. The two con- 
servation conditions, (16) and (17), also provide the 
coupling between the temperature and the fuel mass 
fraction profiles in the boundary layer. 

Now we can look at all the unknowns and the 
boundary and interface conditions that are available. 
For the velocity profile, we have the five unknown 
coefficients, a0 to a&, to be determined. In addition to 
these, we have S(x), the boundary layer thickness to be 
determined. Aithough 6(x) appears in the integrated 
energy and fuel conservation equations through 6, 

and &F, it wifl be treated as an unknown for the 
velocity profile realizing that all the equations are 
coupled. For these six unknowns, we have five boun- 
dary conditions given by equations (13), (14a), and 
(lSa), and one ordinary differential equation given by 
(7a) to be satisfied. For the density or temperature 
profile, we have five coefficients, b0 to bq, and L’ the 
total heat flux per unit mass, as the six unknowns. 
Correspondingly, there are four boundary conditions 
given by (13), (14b), and (Eb), one interface constraint 
given by (17), and one ordinary differ~tial equation 
(7b) to be satisfied. The fuel mass fraction profile has 
the five coefficients, c0 to cq, and (pu), or c~, which 
represents the vaporizing mass flux, as the six un- 
knowns. The corresponding four boundary conditions 
are given by (13), (14) and (1%) one interface con- 
straint is given by (16), and the ordinary differential 
equation is given by (7~). Thus the system of unknowns 
and boundary conditions and interface constraints 
along with the ordinary differential equations is com- 
plete and can be solved. However, it should be realized 
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that the profiles for velocity, temperature, etc., cannot 
be solved independently since the system of equations 
is coupled. It will be possible to eliminate many 
unknown coefficients through the algebraic relations 
which express the boundary conditions. This is briefly 
explained and the important variables to be resolved 
are outlined in the following. 

To proceed further, it is necessary to change from y 
to q for the various integrals and the boundary 
conditions. The relation between rl and y is given by 
equation (9). The thicknesses 6,, 6,, 6,,, and 6rF can 
now be expressed in terms of integrals over q-domain 
and they can be related to 6(x) as follows: 

(18a) 

(18b) 

(18~) 

(18d) 

where 6’(x) used above is related to S(x) as given after 
equation (9). The quantities in the integrals are 
polynomials in rf as given by (10) and (14), and thus the 
integrals can be evaluated in terms of the unknown 
coefficients of the polynomials. Similarly, the con- 
ditions at the interface given by (15) are transformed 
from y to r~. Now the further assumption is made that 
the product pp is constant across the boundary layer 
implying that p is directly proportional to T in the 
boundary layer. Therefore 

PP = P&e (19) 

which may be a function of x. The various quantities 
are non-dimensionalized and written with subscript n 
as follows : 

X u u, 3. 
x, = - ; U, = - ; u,, = -- = - an x,. 

R UT ur 2 
(20) 

Defining Re, = UaR/ver and non-dimensionalizing 
the quantities of the order of boundary layer thickness 
with (Re,)“’ gives 

SA = $ (Re,)“’ 

S2” = : (Re,)‘12 

L?S” = $- (Re,)‘12. 
2 

Similarly, a,, aH, and ByF are non-dimensionalized. L’ is 
non-dimensionalized as 

L:, = E/h,. 

Since rsx, = R sin x,, then 

1 dr u, 
-S-=1, 
rs dx du,/dx 

By use of equation (19) and the above non- 
dimensionalized quantities, the boundary conditions 
and the differential equations after some algebraic 
manipulation can be written as below. 

The integrated momentum, energy and fuel con- 
servation equations (7a-c) now become 

d&n dx+& [cos x,(3 + W~2”)~2” 
n n 

_ 2u,(l - no)/3bo - 2a,/36;] = 0 (23a) 

(1 - T,) + L:]/3b,} = 0 (23b) 

d6rF 
d + sI$ [(cos x,)Br,” - c,,/3b,] = 0. (23~) 
dx, 

The relation between the temperature gradient at the 
interface (expressed by b,) and the heat flux Lb, and the 
relation between the fuel mass fraction gradient at the 
interface (expressed by ci) and the vaporizing mass 
flux u,, are obtained from the conservation of energy 
and fuel mass fraction at the interface as given by 
equations (16) and (17), respectively. These relations 
are 

bi = uY,L~(~ - T,Ybo, 

(24) 

where 

r, = ToIT, 
(25) 

cl = GWo - 1)/b,. 

Similarly, the relation between a2 and Sk, between b2 
and b,, and between c2 and ci are obtained from the 
relations (15a-c) which have been developed by 
requiring that the conservation equations be satisfied 
at the interface. The coefficients so(x), b,(x), and co(x) 
which express the tangential velocity, the temperature, 
and the fuel mass fraction at the interface are assumed 
to be known from the liquid-phase analysis and 
provide the coupling between the two phases requiring 
an iterative solution for the coupled problem. The 
other coefficients of the polynomial profiles, such as a,, 
a3, a4, b,, b,, c3, and cL can be expressed in terms of the 
coefficients a,, a2, b,, b,, bz, co, cl, and c2, respectively 
through linear algebraic relations. The details of these 
relations and other algebraic details are given in [9]. In 
addition to these algebraic relations, the quantities 6i,, 
B2”, BHnr sYFn are related to 6;(x) through the integrals 
given by equations (18a-d). 

Summarizing, we can say that the unknown quan- 
tities to be solved from the coupled nonlinear ordinary 
differential equations (23a-c) are 6:(x), L;(x) and u,, 
(x). Once these quantities are known, shear stress, heat 
flux, and mass vaporization rate can be calculated 
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using simple algebraic relations [9]. Instead of u,, as 
the dependent variable, nondimensional mass flux 
rate was chosen as the dependent variable which is 
reiated to v,, by 

. I, L’s, Ps 
msn = - b. = Perlsn. (26) 

Similarly, b,(x) which is related to L:, by equation (24) 
was chosen as the dependent variable for convenience 
in algebraic manipulation. Shear stress can be easily 
calculated from 6: thus: 

s(Re$” = isinx=>, 
u I n 

(27) 

where a, is related to 6; through known algebraic 
relations. Heat flux into the liquid can be determined 
by taking the difference of total heat flux and the latent 
heat flux for vaporization, so 

(28) 

After substantial algebraic manipulation [9], the 
ordinary differential equations (23a-c) can be written 
with S,, r$‘” and b, as the dependent variables. The 
forms of these equations, dropping the subscript n for 
the non-dimensional quantities for convenience, are 

d6’ 
- -I-&6’,b, 

dx - sinx 
,rnZ) = S,(x,G’,b,,ri$) 

(29a) 

(29bf 

’ 
(294 

The functional forms offi,fi,fj are very long [9]. In 
general, these functions are nonlinear. The equations 
(29a-c) are coupled nonlinear ordinary differential 
equations and have to be solved simultaneously. 

To start the solution of these equations, solution at 
some value of x is required. It can be seen that at x = 0 
(i.e. at the forward stagnation point), the right-hand 
sides of the equations should go to infinity unless the 
multiplying functions are zero. So it is required that at 
x = 0, 

j-l = 0, f2 = 0, $3 = 0, (30) 

and these conditions provide the starting solution at 
the front stagnation point. Now the right-hand sides of 
equations (29a-c) are indeterminate, so use is made of 
symmetry at x = 0 which requires that the gradients be 
zero. Thus, at x = 0 

da 
-_=O, d$=O, d&LO. 
dx 

(31) 

With these starting conditions, equations (29a-c) 
are integrated numerically moving forward in the x- 
direction; the integration is conducted until the zero- 
shear-stress point is reached. Beyond this point the 
boundary layer becomes very thick, disallowing the 
boundary layer approximation, and the shear stress 
and heat and mass fluxes are small in this region for the 
Reynolds number of interest. 

The gas-phase problem formulated here can be 
uncoupled from the liquid-phase equations of motion 
and energy if the surface velocity and temperature are 
specified and the droplet radius is assumed to be 
constant. However, in the coupled problem, the liquid- 
phase problem is solved to get the surface velocity and 
temperature which are then used as input for the gas- 
phase problem. But since the liquid-phase sohttion 
depends on the gas-phase solution due to shear stress 
and heat flux at the interface, an iterative solution of 
the coupled problem is required. 

For the numerical integration of equations (29a-c), 
first the stagnation-point solution was obtained by 
solving the system of nonlinear coupled algebraic 
equations (30). These equations were solved numeri- 
cally using the Newton-Raphson technique for 
achieving faster convergence to the solution. The 
stagnation-point solution was utilized for x I x0, 
which is taken to be five steps in the x-direction where 
each step equals 0.02. Once this solution was obtained, 
a marching procedure was employed for the solution 
of the differential equations (29a-c) for x > x0. The 
equations (29a-c) were integrated using an explicit 
third-order Runge-Kutta scheme [9]. Solution for the 
uncoupled gas-phase problem was obtained for a 
particular case of ethyl alcohol in air at lOOOK at 
20 atm. The values of u,/u#, and T, were assumed to be 
constant at the interface, although they will vary with x 
in the coupled problem. The values chosen for these 
quantities were 

U&J, = 0.1, T, = 353 K. 

The results of the calculations are shown in Fig. 2. It 
can be seen from the figure that the non-dimensional 
shear stress first increases, reaches a maximum, and 
then decreases to zero at about 2.0 radians from the 
front stagnation point. The heat and the vaporizing 
mass fluxes continually decrease in the downstream 
direction due to the increasing boundary layer thick- 
ness, and are of the order of 20% of their front 
stagnation region values near the zero-shear-stress 
point. These quantities will remain small beyond the 
zero-shear-stress point for the Reynolds number of 
interest, and will be neglected in the present analysis. It 
should be noted that the heat flux into the liquid phase 
is more than 80 y0 of the total heat flux at this specified 
value of the surface temperature. However, as the 
surface becomes heated with time, the fraction of the 
total heat flux into the liquid phase will decrease. As we 
shall see later from the solution of the coupled 
unsteady problem, this fraction stays at a significant 
value and therefore the unsteady state vaporization 
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FUEL: ETHANOL; Tm = lOOO“K, p,,= ZOotm., Rea= F 

0.02 - 

Ts = 353”K, -$-- 5 0.1 

I. SHEAR STRESS 

IU. GAS SIDE HEAT FLUX 

LIQWD SIDE HEAT FLUX 

POSITIOFJ ON DROPLET SURFACE, 8= 8, RADIANS 

FIG. 2. Comparison of results in this paper with available ex~rimental results. 

persists for a large part of the droplet lifetime. 

111. LIQUID-PHASE ANALYSIS 

The liquid-phase analysis was performed in a pre- 
vious paper [7] and the reader is referred to that for the 
details. The results of that analysis will be summarized 
here, and the analysis for the thermal core will be 
modified to account for the decreasing droplet radius. 
In the uncoupled liquid-phase analysis, it was shown 
[7] that the liquid motion is quasi-steady and consists 
of a Hill’s vortex in the droplet core with a thin viscous 
boundary layer near the droplet surface and an 
inviscid internal wake near the axis of symmetry. In the 
viscous boundary layer, the velocity perturbations are 
small although the vorticity perturbations are large. 
Similarly, there is a thin quasi-steady thermal boun- 
dary layer near the droplet surface in which the 
temperature gradients are large. The analysis of the 
thermal boundary layer is similar to that of the viscous 
boundary layer and is coupled to the thermal core in 
the matching region. 

The droplet core heating was shown to be essentially 
unsteady and normal to the closed streamlines* be- 
cause of a very short residence time along a streamline 
compared to the droplet lifetime. Therefore, the ortho- 

*The axisymmetric stream surfaces will be referred to as In the orthogonal streamline coordinate system 
streamlines. (&$.a), r~ being in the azimuthal direction, the cor- 

gonal streamline coordinates were used for the energy 
equation in the core. However, for a vaporizing droplet 
where the radius is decreasing, the closed stream 
surfaces cannot retain their shape and size and have to 
deform to adjust to the decreasing radius in time. Since 
the liquid motion is quasi-steady, this change takes 
place in a very short time, and at any instant we have 
closed Hill’s vortex streamlines. The mass which 
vaporizes in any infinitesimal time period is taken to be 
all of the liquid between the droplet surface and a 
neigh~ring liquid stream surface at the beginning of 
that time period. Therefore, the mass associated with 
the center of the vortex, which remains coldest, 
vaporizes only at the end. This suggests the use of 
orthogonal mass weighted streamline coordinates for 
the energy equation in the core when the droplet radius 
is decreasing. 

The stream function for the Hill’s vortex is redefined 
so that the center of the vortex corresponds to the zero 
value of $, 

JI = AR4/8 - Ar2(R2 - rz)sin2 O/2. (32) 

A non-dimensional stream function # is defined such 
that its value is zero at the vortex center and unity at 
the droplet surface so 

$ = &b/AR4 = 1 - 4&l - $)sin*B, (33) 

where p = rjR. 
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in the flow field. The energy equation now simplifies to 

h, = Ar5u, toss 0/2 

h, = l/(rui sin@) 

h, r sin 8, 

(34) 

so that h,h, = lfu,, where u, is the only velocity 
component in the streamwise direction l. 

A quantity FE, proportional to the mass contained 
within any closed stream surface, can now be written as 

V@,dt; d$. (35) 

The above quantity can be expressed in terms of the 
non-dimensional stream function 4, noting that 
h,h, = l/u,, and defining a dimensionless function of d, 
as follows : 

Now m, which is a function of # and t, becomes 

m($, t) = R3 
? 

sl(cb)d#. (37) 
0 

Now the contour integrations in the energy equation 
(40) can be changed to a ‘4 = constant’ contour at any 
instant, realizing that the velocity field, the droplet 
radius, and cf, change very little for the corresponding 
'm = constant’contour during the short residence time 
along such a contour. However, the time derivative on 
the left-hand side of the equation is still taken with m 
kept constant, since the change in average temperature 
on a ‘m-constant’ contour is on a time scale which is 
comparable to the lifetime of the droplet. Further- 
more, we define the average temperature gradient on a 
closed contour as follows: 

The time dependence appears through the radius of the 
droplet which is decreasing, and gr(4) is defined by 
equation (36). 

The orthogonal mass-weighted streamline coor- 
dinate system that should be used for the energy 
equation in the thermal core is (i, m, q) as explained 
earlier. The scale factor associated with the m- 
coordinate is 

h,,,=z-h,. 
8siM) 

In this coordinate system, there is oniy one component 
of velocity u1 in the stream-wise direction at any 
instant. The energy equation with axial symmetry in 
this coordinate system is 

(38) Now given the relations between h, and h,, and 
between m and Cp, and the definitions of average 
temperature and its gradient as above, the energy 
equation (40) can be written in the (m,t) coordinate 
system as 

Since the temperature along any closed contour, 
m = constant, is assumed uniform at any instant 
because of a rapid recirculation, the coordinate < can 
be formally eliminated from the energy equation by 
integrating it along this closed contour. Multiplying 
throughout by ul. noting that h,h, = ljult and in- 
tegrating the above equation along a closed contour, 
m = constant, we notice that the second term on the 
left-hand side and first term on the right-hand side 
vanish because of the continuity of T and 

The above equation in (m,t) coordinates has a 
moving boundary since the value of m changes at the 
core boundary as the droplet vaporizes. Therefore, we 
change to (4, t) in which the value of d, is constant at 
both the boundaries, i.e. at the center of the vortex and 
the core boundary. Before making the change of 
variable, we define an average temperature on a 
‘m = constant’ contour (which is also a ‘C#J = constant’ 
contour at any instant, although the value of4 changes 
with time) as 

(4% 

Defining 

as given by (36), and 

92(d) = & (44) 

and ~han~ng to the (+,t) system, we can write the 
energy equation in the form 
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Temperature and time are non-dimensionalized thus 

T,” - G 

(46) 

where R, is the initial radius of the droplet. The energy 

equation can now be written as 

(47) 

where 

R; sz(d) 
U(C#J,T) = ~ __ 

R2 sl(4)’ 
and 

b(4, T) = !!i d[g2(‘)! .L + 3 dR ’ 
R2 d$ sl(+) R d7 

91 
o 

(48) 

The form of the energy equation (47) is identical to 
the one given by (26) in [7] except for the dR/dr term in 
b(4, T), and the (R$R’) terms which appear due to the 

changes in the droplet radius. The boundary con- 
ditions to equation (47) are the same as in [7]. These 
are as follows: 

(i) At the core boundary, i.e. 4 = $o, 

(ii) At the center of the vortex, i.e. at 4 = 0, the 
temperature is a regular function of 4, and 
therefore 

(iii) In addition to these boundary conditions, the 

initial condition is that at r = 0, 

TbV = 0. 

In the boundary condition (i) above, the tempera- 
ture gradient C’,(t) is obtained by requiring the 
continuity of heat flux in the matching region of the 
thermal boundary layer and the thermal core. The 
energy equation in the thermal core is solved numeri- 
cally using a Crank-Nicholson type of scheme and the 
solution is marched forward in time, solving the gas- 
phase equations and the liquid-phase equations of 
motion, and thermal boundary layer equations at each 
instant. 

IV. SOLUTION OF THE COUPLED PROBLEM, 
RESULTS AND DISCUSSION 

In the coupled problem with vaporization, first the 
gas-phase boundary layer is solved using the initial 
guess or the relaxed previous iterated values for surface 
velocity U, and the surface temperature T,. With the 

shear stress and the heat flux from the gas-phase 
solution, the liquid-phase viscous and thermal boun- 
dary layers and then the thermal core are resolved. The 
gas-phase and liquid-phase solutions are iterated until 
the required convergence is achieved. The new droplet 

radius corresponding to the next time step is calculated 
and the process repeated at the advanced time. Since 

the droplet gets heated in time, the liquid viscosity and 
thus the strength of the Hill’s vortex are updated in 
time. The calculations in time are continued until the 
square root of the droplet mass is 30 7; of the original 
value, implying that the droplet mass left is about 9 lb 
of the original mass. The details of the calculation 

procedure are given in [9]. 
The overall vaporization rate at any instant is 

calculated by integrating the vaporizing flux over the 
droplet surface. Therefore, the mass vaporization rate 
and the time rate of change of droplet radius at any 

instant can be expressed by 

dR 

dt = 
r;l: sin H dH, (49) 

where &’ is the vaporizing mass flux and is integrated 
up until the zero-shear-stress point ~9,, since the 

contribution of the region beyond this point is small 
for the Reynolds number of interest and cannot be 

calculated with the boundary layer approximation. 
The coupled problem was solved for three hy- 

drocarbon fuels in air at 1000 K and 10 atm. The three 

fuels chosen were n-hexane, n-decane, and n- 

hexadecane to get a fairly wide range of volatility. The 
results of computation with these three fuels are 

plotted in Figs. 3-5 which show the variation of 

(RIRJ3” and the non-dimensional average vaporizing 
mass flux (6:) scaled with the instantaneous gas-phase 
Reynolds number. This is a rational choice for pre- 
sentation of the results since, in the limits of a quasi- 
steady, high-Reynolds-number system, (R/R0)3’2 is 
linear in time. Naturally, its derivative is constant in 

that limit. When the gas-phase Reynolds number is 
changing due to the droplet radius alone, as assumed 

in the present study, the average vaporizing mass flux 
is proportional to the derivative (d(R/Ro)3i2)/dr. As 
seen from the figures, the slope ofthe (R/RO)“* curve is 
initially small due to the small vaporization rate and 
the heating of the droplet. This slope and the average 
mass flux increase rather sharply for the more volatile 

fuel, n-hexane, and gradually for the less volatile fuels, 
n-decane and n-hexadecane. As the droplet gets hea- 
ted, the change in average vaporizing mass flux is 
slower and tends towards an asymptotic value. The 
slope of the average mass flux curve is much smaller for 
n-hexane than for n-hexadecane towards the end. This 
behavior is also shown in Fig. 6 which shows the 
variation of droplet surface temperature at the 0 = 90” 
point, and the temperature at the center of the vortex. 
The surface temperature rises sharply for the more 
volatile fuel, and later the change becomes smaller. 
Note that the surface temperature for each of the three 
fuels is less than the boiling point of the fuel (more so. 
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for the less volatile fuel) even at the end of the droplet 
lifetime. Here and in the following discussion, the end 
of the droplet lifetime will refer to the instant when 

W&J3’* = 0.3 because more than 90 % of the original 
mass has vaporized, and the computation is not 
carried on beyond this time. Note that the Reynolds 
number decreases only by a factor of about two up to 
this point, so that the high Reynolds number approxi- 
mation remains valid throughout the calculation. 

The temperature at the center of the vortex which is 
cold initially rises with time as seen from Fig. 6. The 

vortex center temperature is about 20°C lower for 
hexadecane and about 6°C lower for hexane, and in 
between the two for decane, even at the end of droplet 
lifetime. It is considerably lower than the droplet 
surface temperature during the earlier part of the 
lifetime. Therefore, the uniform temperature assum- 
ption seems to be inappropriate for most of the droplet 
lifetime. 

Figure 7 shows the variation of non-dimensional 
average heat flux, scaled with instantaneous Reynolds 
number, with time for the three fuels. Similarly, Fig. 8 
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FIG. 3. Droplet size and vaporization rate vs time. 
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FIG. 4. Droplet size and vaporization rate vs time. 
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FIG. 6. Surface and vortex center temperature variation. 
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FIG. 7. Average heat flux for the three fuels. 
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FIG. 8. Heat flux distribution for n-decane. 

shows the heat flux distribution over the droplet 
surface at different instants for n-decane. As seen from 
these figures, the heat flux into the liquid phase for 
hexane is about 7 % of the total heat flux on the gas side 
at the end of the droplet lifetime. For hexadecane 25 %, 
and for decane about 17 Y0 of the total heat flux goes 
into the liquid phase even at the end of the droplet 
lifetime. The fraction is still larger for all three fuels in 
the earlier part of their lifetime. This explains the 
nature of the curves in Figs. 3-6, the more volatile fuel 
like hexane being closer to a quasi-steady state sit- 
uation toward the end of the droplet lifetime than the 
less volatile fuels viz. decane and hexadecane. 

A comparison of our results with the 
Rams-Marshall type correlation [3] and with the 

Spalding correlation [4] was made for the vapori- 
zation rate. The two correlations are 

Ranz-Marshall type correlation 

i = r&( 1 + 0.276 Re:” Pri’3), 

Spalding correlation 

6”d __ = 0 53 B3/5 j&$2 

P . 
* . 

In using the above correiations, the heat of vapori- 
zation was modified to take into account the heat flux 
into the liquid phase; the modified heat of vapori- 
zation was calculated using our results for the average 
heat flux into the liquid phase as shown in Fig. 7. The 
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temporal variation of average mass flux using the lifetimes for the three fuels are only about lo”/& 
above correlations is shown in Figs. 3-5 for the three although their volatilities are quite different. However, 
fuels. A comparison with our results shows that the the vaporization rates in the initial part of the lifetime 
agreement with the Ram-Marshall correlation is are substantially smaller for the less volatile fuels, as 
good during the initial part of the lifetime when the can be seen from Fig. 9, and this will have significant 
vaporization rate is small. The agreement with the effect in determining the overall lifetime when con- 
Spalding correlation is better during the later part of sidering spray burning in a combustor. In such a 
the lifetime. It should be noted that the Spalding situation, there will be a flame front approaching the 
correlation is suggested for values of B between 0.6 and droplets which are still heating and therefore, the more 
5, but the value of B with modification for the liquid- volatile fuel and the fuel with lower heat of vapori- 
phase heat flux is smaller than 0.6 during the initial zation will have more fuel present to enhance the rate 
part of the lifetime. However, our values towards the of propagation of the flame front and thereby further 
end of the lifetime are lower than the values of the two increase the rate ofvaporization and reduce the overall 
correlations by about 15520%. This difference could droplet lifetime. The reason for the small variation in 
be due to the neglect in our calculations of the wake the overall lifetime of a single droplet is that the surface 
region which has a bigger contribution towards vapo- temperature for the less volatile fuel rises quickly to a 
rization when the droplet is heated than in the initial high value in a very short time during which the quasi- 
part of the droplet lifetime when it is cold. It should be steady thermal boundary layer is established. This 
noted, however, that the Spalding correlation was time is of O(Pe;‘) R$a,, and is very small and is 
based on experiments with a gas-phase Reynolds neglected in the present analysis. This can be seen from 
number between 800 and 4000, and the scatter of the Fig. 6 which shows the initial surface temperature to be 
experimental results was about 15520%. The 346 K for hexane, 384 K for decane, and 428 K for 
Ranz-Marshall experiments were also conducted for hexadecane. After the initial establishment of the 
small values of transfer number B. The above com- thermal boundary layer, the surface temperature rises 
parison suggests that it may be possible to use some quickly initially and then slowly, so that the less 
empirical correlations like the above two for vapori- volatile fuel is always at a higher temperature at any 
zation rate, if the liquid heat flux is taken into account. time, and the droplet lifetime is not significantly 
However, the calculation of the liquid heat flux would affected due to the differences in volatility. Of course, 
require the solution of the unsteady coupled problem different results can be expected if the ambient gas 
for the gas and the liquid phase. temperatures were not so high. 

For a comparison of the droplet lifetime for the three 
fuels, the curves for (R/RJ3" vs z are plotted on the 
same graph in Fig. 9. Since the time scale is non- 
dimensionalized with the thermal diffusion time R$x,, 
the variations in the droplet lifetime for the three fuels 
are mainly due to the differences in their volatilities; it 
can be seen from the figure that the variations in the 

Figure 10 shows the temperature distribution inside 
the thermal core for a decane droplet at various 
instants. As can be seen from this figure, the droplet 
temperature becomes uniform only towards the end of 
the droplet lifetime indicating that the droplet heating 
is essentially unsteady. 

The question arises as to the importance of the 

0 0.02 0.04 0.06 0.08 0.10 0.12 

NON-DIMENSIONAL TIME , T 

FIG. 9. Results for the three fuels. 
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FIG. 10. Temperature distribution inside thermal core. 

internal circulation for the droplet vaporization char- 
acteristics. The internal circulation model lies between 
two extreme models: (a) a pure conduction model 
without any circulation, and (b) a rapid-mixing model. 
The pure conduction model is a proper limit for zero 
vortex strength. The rapid-mixing model is the result 
of faulty reasoning whereby infinite circulation rates 
are considered to lead to uniform liquid temperature 
immediately. However, the internal circulation model 
shows that at large vortex strength, the temperature 
profile is independent of vortex strength and still 
nonuniform. Internal circulation leads to a shorter 
characteristic heating length than in the pure con- 
duction case. In particular, the distance from the 
droplet surface to the vortex center is a factor of about 
three less than the droplet radius. This implies that the 
characteristic heating time (which is proportional to 
length squared) decreased by about an order of 
magnitude due to internal circulation. Once the circu- 
lation time is short compared to the heating time, the 
heating time is independent of the circulation time (or 
essentially independent of the vortex strength). The 
heating time is defined as the time required to reach a 
nearly uniform temperature profile in the droplet; it is 
not necessarily the time required to bring the droplet 
to a final temperature. In some cases, the droplet 
temperature will still be increasing at the end of the 
droplet lifetime. It is expected that the internal circu- 
lation via increased heat transfer rates to the droplet 
interior will yield lower surface temperatures and 
lower vaporization rates during the initial portion of 
the droplet lifetime than would be achieved with pure 
conduction only. The rapid-mixing model should yield 
still lower vaporization rates during this initial 

Less sophisticated models, such as the rapid-mixing 
model, may give acceptable results for the droplet 
lifetime. However, in certain situations with moving 
droplets, an accurate evaluation of the spatial va- 
riation of the fuel vapor source strength is required. In 
such cases, the present type of analysis of the transient 
phenomenon should be superior. 

Summarizing all the above results for an isolated 
droplet, it can be concluded that the unsteadiness in 
droplet vaporization persists for most of the droplet 
lifetime, especially so for the less volatile fuels. The 
temperature distribution inside the droplet is nonuni- 
form for most of the lifetime; the difference between 
the surface temperature and the temperature in the 
interior is higher for the heavier and less volatile fuels. 
The Ranz-Marshall and the Spalding correlations 
seem to agree well when the heat flux into the liquid 
phase is taken into account by modifying the heat of 
vaporization. The two correlations give higher values 
for the average mass flux than ours, possibly due to the 
neglect of the wake region in our calculations. 
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THEORIE DE LA VAPORISATION CONVECTIVE DES GOUTTES AVEC 
TRANSFERT THERMIQUE VARIABLE DANS LA PHASE LIQUIDE 

R&sum& - On analyse le probltme de la vaporisation d’une goutte liquide dans un environnement gazeux 
convectant. On developpe une nouvelle analyse pour une phase gazeuse visqueuse, pour des couches hmites 

de temperature et de concentration d’especes, en utilisant une approche integrale. L’analyse de la phase 
gazeuse est couplee a une forme modifib de I’analyse de la phase hquide selon S. Prakash et W. A. Sirignano, 
Int. J. Hear Mass Transfer 21,885-895 (1978). Le couplage est resolu pour trois hydrocarbures (n-hexane, n- 
d&cane et n-hexadecane). Les risultats montrent que la vaporisation de la goutte est variable et que la 
distribution de temperature dans la goutte n’est pas uniforme pendant une grande periode de la duree de vie 
de la goutte. Quelques resultats sont compares aux relations don&es anterieurement apres les avoir 

corrigees pour le flux thermique dans la phase liquide. 

THEORIE DER KONVEKTIVEN TRGPFCHENVERDUNSTUNG MIT 
VERANDERLICHEM WARMETRANSPORT IN DER ZIRKULIERENDEN 

FLUSSIGEN PHASE 

Zusammenfassung - Es wird das Problem der Verdunstung von Fliissigkeitstropfchen in eine he&, 
gasfdrmige Umgebung, die sich in Konvektionsbewegung befindet, behandelt. Mit Hilfe einer Integralnahe- 
rung wurde fiir die Beschreibung der Viskositats-, Wirmeleitungs- und Konzentrationsgrenzschichten der 
Gasphase ein neues Berechnungsverfahren entwickelt. Die Berechungsmethode fiir die Gasphase wurde mit 
einer abgewandelten Form einer friiheren Berechnungsmethode fiir die innere Bewegung und den 
Warmetransport in der Fliissigkeitsphase gekoppelt [S. Prakash und W. A. Sirignano, Int. J. Heat Mass 
Transfer 21, 885-895 (1978)]. Das gekoppelte Problem wurde fiir drei Kohlenwasserstoff-Brennstoffe (n- 
Hexan, n-Decan und n-Hexadecan) gel&t. Die Ergebnisse zeigen, daB die Trijpfchenverdunstung unstetig 
verlauft und da13 die Temperaturverteilung innerhalb des Tropfchens wiihrend einer bedeutenden Zeit der 
Lebensdauer der Triipfchen ungleichfijrmig ist. Einige Ergebnisse werden mit den bereits vorhandenen 
Korrelationen verglichen, nachdem jene zur Beriicksichtigung des Warmestroms in der fliissigen Phase 

korrigiert wurden. 

TEOPMR KOHBEKTHBHOFO MCIIAPEHMR KAIIJIM IIPB HECTAUMOHAPHOM 
IIEPEHOCE TEIIJIA B HMPKYJIWPYIOIIIEfi XKMAKOH @A3E 

AHHorauWn - AHaJIII3IIpyeTCR npo6neMa IICnapeHIIs IHJIKOii Ka”JIII B HarpeTOfi KOHBeKTHBHOfi ra30- 

BOfI Cpene. C nOMOII,bIO HHTerpaJIbHOrO MeTOLla pa3pa60TaH HOBbIti cnoco6 aHaJIR3a BI3KOCTHOrO 

TennoBoro n xouuenrpaurromtoro norpanmnroro cnori a rasoeol +ase. AanHbIk aHane3 ucnonb- 

3ycTCs COBMeCTHO C MOLIIIIjNIuIIpOBaHHbIM aHaJIII30M n,Is NUIK0i-I I$a-JbI, npen,IOmeHHbIM paHee il”R 

CJIy’IaII BHyTpeHHerO LIBIITeHRII W TenJIOnepeHOCa [npaKaIIIX II CIIpHrHaHO, MeWIyHapOnHbIii KypHaJI 

Tenno- u Macconepenoc. 21, 885-895 (1978)]. Conpn~enuaa aana’ia pemaercs nm T~EX yrneeono- 
ponHbIx TonnuB (n-reKcaH, n-neKaH n n-reKcaneKaH). PesynbTaTbI noKa3bIBamT. ST0 npouecc ucna- 

pe~na Kannu sBnseTcs HecTaueoHapHbIM, a pacnpenenenue TeMnepaTyp ~Hy~pn Kannw - HeonHopon- 

ubn.4 a TeqeHae 6onburero npobIexyTKa BpeMeHu cymecTBoBaHne Kannn. fIpoBeneH0 cpaanenae 

‘IaCTkI “OJIy’IeHHbIX pe3yJIbTaTOB C IIMeIOIIIWMHCII COOTHOmeHBIMH C y’IeTOM I,OnpaBOK Ha TenJIOBOii 

nOTOK B XKWIIKyIO @a3y. 


